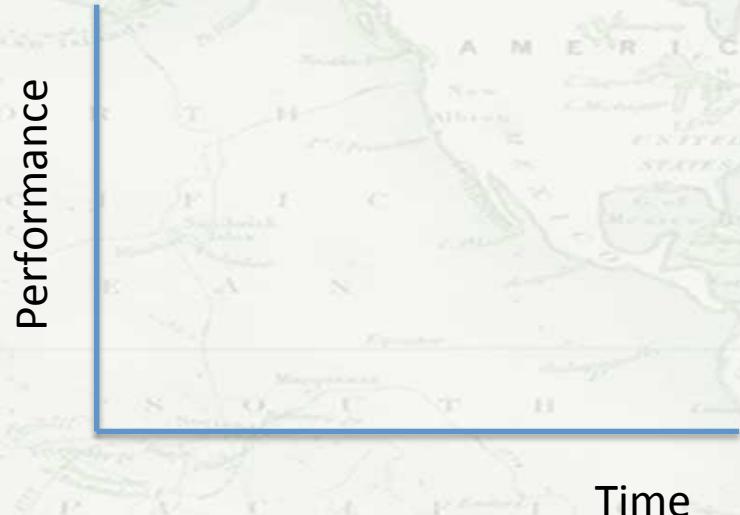


ASQ CRE Prep course


Lesson V. C. 6.

Degradation Testing

A Failure Threshold

**Item loses functionality
gradually**

**Component parameter
drifts, for example.**

Non-Parametric Models

Complex distributions

Unknown distributions

Small sample sizes

Fewer assumptions

The Linear Model

Each stress has linear relationship with time to fail

Can model more than one stress (if each stress contributes independently)

$$T_i = A + B_i(X_i) + \varepsilon_i$$

T_i the i^{th} unit time to failure
 X_i are the stresses
 B_i are the regression slopes
 A is a constant
 ε_i the error coefficients

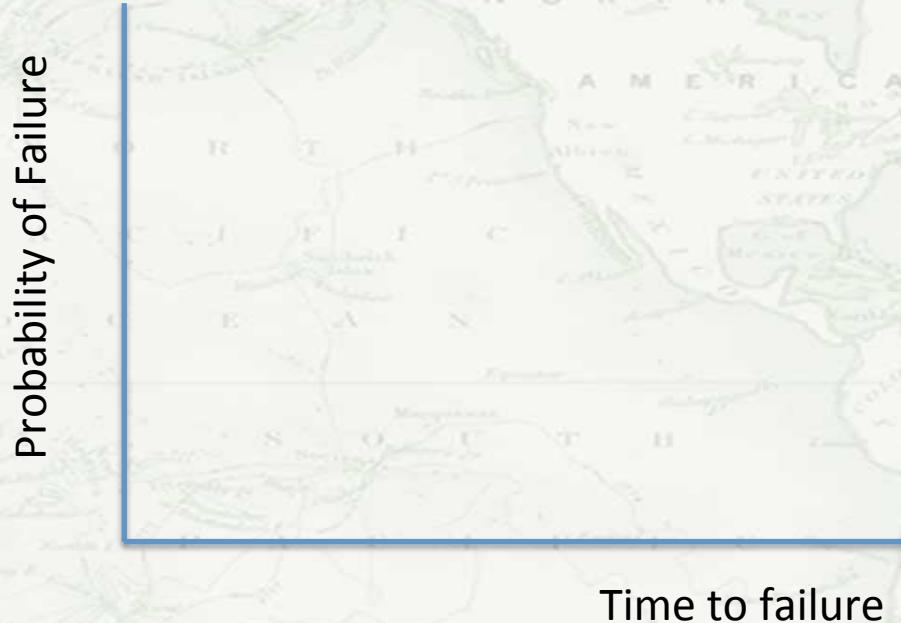
Proportional Hazards Model

Failure time distribution
– no assumptions

Useful when:

- Censored data
- Tied values
- Zero failure times
- Attribute data

Assumptions:


Hazard rate functions proportional to one another

Applied stresses are multiplicative effect on hazard rate

Parametric Models

**Variables data for
applied stresses**

**Acceleration models
and lifetime
distributions**

Arrhenius Model

Temperature driven rate of chemical reaction

Widely used as empirical model

$$A_T = \exp \left[\frac{E_a}{k} \left(\frac{1}{T_o} - \frac{1}{T_s} \right) \right]$$

A_T is the acceleration factor

E_a is the activation energy

K is Boltzmann's Constant

T temperature in Kelvin

Eyring Model

Modeling of more than one stress factor

Used empirically to fit time to failure data

$$t = \left[aT_\alpha e^{b/T} \right] \left[e^{\left(c + \frac{d}{T} \right) S_1} \right]$$

t is time or time to failure

T is temperature Kelvin

α ,a, b, c, d are constants

S_1 level of non-thermal stress factor

Inverse Power Model

Kinetic theory and activation energy form basis

Voltage model works with capacitor dielectric breakdown, for example.

$$L_o = L_s \left(\frac{V_s}{V_o} \right)^n$$

L is mean life
C > 0 a constant
n is a constant
V is voltage

How do you
know which
model to use?

ASQ CRE Prep course

Lesson V. C. Bonus

Acceleration Factors