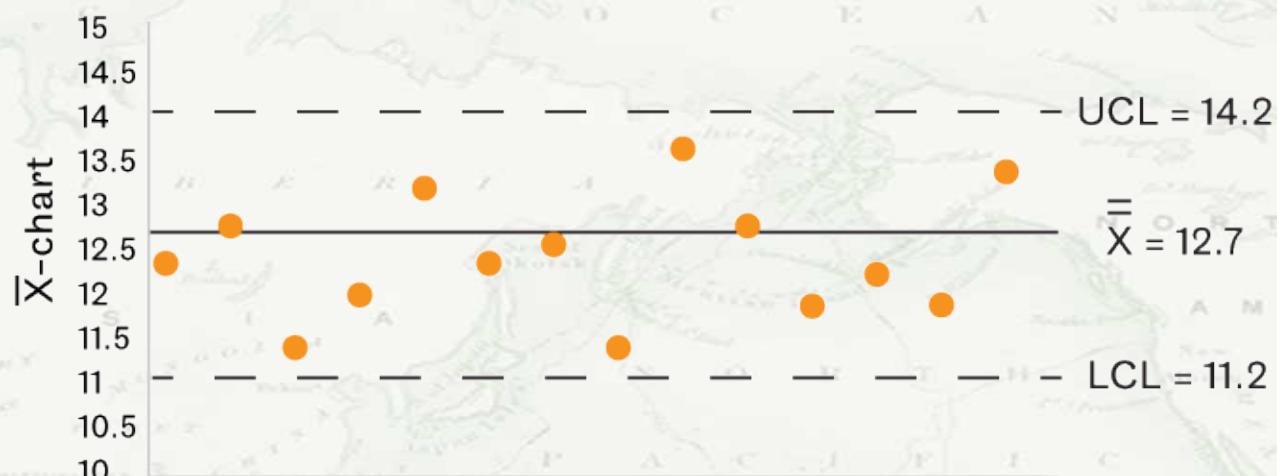


ASQ CRE Prep course

Lesson II. A. 7. b.


SPC and Process Capability

X-bar and R Charts

The one that we all learn first

X-BAR AND R CHARTS

Steps to construct X-bar & R charts

1. **Determine sample size**
2. **Collect 20 to 25 sets**
3. **Calculate average for each sample**
4. **Calculate range for each sample**
5. **Calculate X-double bar**
6. **Calculate R-bar**
7. **Calculate control limits**
8. **Plot the data and ID out of control signals**

A few factors and formulas

\bar{X} Chart

$$UCL_{\bar{X}} = \bar{\bar{X}} + A_2 \bar{R}$$

$$LCL_{\bar{X}} = \bar{\bar{X}} - A_2 \bar{R}$$

R Chart

$$UCL_R = D_4 \bar{R}$$

$$LCL_R = D_3 \bar{R}$$

n	A2	D3	D4
2	1.88	0	3.27
3	1.02	0	2.57
4	0.73	0	2.28
5	0.58	0	2.11
6	0.48	0	2.00

Remember the Limit Distance

$$A_2 \bar{R} = 3s_{\bar{X}}$$

$$s_{\bar{X}} = \frac{s_X}{\sqrt{n}}$$

What is the role
of the Central
Limit Theorem?

ASQ CRE Prep course

Lesson II. A. 7. c.

SPC and Process Capability

Selecting Control Charts