

ASQ CRE Prep course

Lesson II. A. 5. b.

Non-Parametric Methods

Ranking

Powerful nonparametric techniques

NONPARAMETRIC TECHNIQUES

Kendall Coefficient of Concordance

- **Let's say three people ranked ordered their preference for 10 pieces of music.**
- **Determine if the three people like the same music (similar rank orders)**

Rankings (raw data)

A	B	C
1	7	6
5	6	4
6	2	8
7	5	5
10	9	10
4	3	1
8	1	3
3	10	9
9	4	7
2	8	2

Rank Sums(add across)

A	B	C	i	R_i
1	7	6	1	14
5	6	4	2	15
6	2	8	3	16
7	5	5	4	17
10	9	10	5	29
4	3	1	6	8
8	1	3	7	12
3	10	9	8	22
9	4	7	9	20
2	8	2	10	12

Some calculations

- Determine R-bar

$$\bar{R} = m(n+1)/2$$

- m is number of evaluators
- n is number of items being ranked
- In this case R-bar is 16.5

- Compute S – sum of squared deviations

$$S = \sum_{i=1}^n (R_i - \bar{R})^2$$

- S = 320.5

W Coefficient

- **Compute Kendall's coefficient of concordance, W**

$$W = \frac{12S}{m^2(n^3 - n)}$$

W is between zero (no concordance) and 1 (high concordance)

- **W = 0.432**

Test Statistic

- Chi Squared value **This is only for $n > 7$**

$$W = \frac{12S}{mn(n+1)}$$

- $X^2 \approx 11.65$

Critical Value

- For $n > 7$ use Chi-squared
- $df = n - 1$
- Alpha = 0.1 (using 90% confidence)
- From tables
- 14.684
- Since the test statistic is less than critical value, 11.65. Insufficient evidence of alignment between rankings.

Spearman Rank Correlation Coefficient

- Determine degree of association between two ordered series.
- Like ratings on movies
- Unknown distribution
- R_s approaches 1 or -1 for strong correlation and approaches 0 for weak correlation.

$$r_s = 1 - \left(\frac{6 \sum D^2}{n(n^2 - 1)} \right)$$

Kruskal-Wallis One-way Analysis of Variance by Ranks

- Compare 3 or more groups or treatments
- Any or unknown distribution
- Data has to be suitable for ranking
- Comparing ranking, not actual data
- Hypothesis test structure
- Ranks in each group about the same – null

See
creprep.wordpress.com

ASQ CRE Prep course

Lesson II. A. 5. c.

Non-Parametric Methods

Reliability & Comparisons