

ASQ CRE Prep course

Lesson II. A. 4. e.

Poisson Process Models

Laplace's Trend Test

A wide-angle photograph of a coastal landscape. The foreground is filled with the calm, light blue-green waters of a sea or lake. In the middle ground, a range of mountains with snow-capped peaks stretches across the horizon under a clear, pale blue sky. The overall scene is serene and expansive.

Another trend test

LAPLACE'S TREND TEST

Step 1: Set Period of Observation

- **Set T the period of interest**
- **Either at time of last failure**
 - Drop last failure and
 - Reduce n by one
- **Or, a duration of interest, say one year**

Step 2: Gather arrival times

- **Test uses cumulative times, not interarrival times**
- Let's use the example of:
36, 63, 86, 128, 165, 324

**are days on which repairs occur
and repairs take about an hour**

Step 3: Calculate test statistic

- **The test statistic z is**
 - T is selected duration
 - t-bar is the mean of cumulative time to failure data

$$z = \left(\frac{2\bar{t}}{T} - 1 \right) \sqrt{3n}$$

$$\bar{t} = \frac{\sum t_i}{n} = \frac{802}{6} = 133.67$$

- **Let's set T = 365 days, and**
- **Thus** $z = \left(\frac{2\bar{t}}{T} - 1 \right) \sqrt{3n} = \left(\frac{2(133.67)}{365} - 1 \right) \sqrt{3(6)} = -1.135$

Step 5: Compare z-value & critical value

- The critical value for $\alpha = 0.05$ for this two sided test is ± 1.96
- Since -1.13 is within the range of ± 1.96 the data does not show convincing evidence of a trend
- Extreme negative values show improving reliability, extreme positive values show degradation

Why would you
want to know
the trend?

ASQ CRE Prep course

Lesson II. A. 4. f.

Poisson Process Models

Fisher's Composite Test