

ASQ CRE Prep course

Lesson II. A. 4. a.

Poisson Process Models

Homogeneous Poisson Process

Counting the arrivals of failures

HOMOGENEOUS POISSON PROCESS

HPP and Poisson Distribution

- **Independence**
- **Proportional to interval length**
- **One event at a time**

- **$N(t)$ # of occurrences**
- **t is interval length**
- **λt is mean and variance (Poisson)**

$$\Pr\{N(t) = k\} = e^{-\lambda t} \frac{(\lambda t)^k}{k!}$$

$$1 - \Pr\{N(t) = 0\} = 1 - e^{-\lambda t}$$

Assuming Exponentially Distributed Failure Times

- **Probability of failure in any interval is exponentially distributed**
- **Memoryless**
- **Repairs restore to as new**

Example

- **What is probability of failure during 40 hour week with $\lambda = 0.002$?**

Example

- **What is probability of failure during 40 hour week with $\lambda = 0.002$?**

$$F(40) = 1 - e^{-\lambda t}$$

$$F(40) = 1 - e^{-0.002(40)}$$

$$F(40) = 1 - 0.923$$

$$F(40) = 0.077$$

Maintenance Strategy?

ASQ CRE Prep course

Lesson II. A. 4. b.

Poisson Process Models

Repair System Terminology